# DLG-Prüfbericht 6305

**ExxonMobil Petroleum & Chemical BVBA, Antwerpen** 

Schmierstoffkombinationen im Verbund





KONTINUIERLICH GEPRÜFT

DLG-Zertifikat 6305

# Überblick

Der DLG-Qualitätssiegel-Test ist die umfassende Gebrauchswertprüfung der DLG nach unabhängigen und anerkannten Bewertungskriterien für landtechnische Produkte. Der DLG-Qualitätssiegel-Test bewertet neutral die wesentlichen Merkmale des Produktes von der Leistungsfähigkeit und Tiergerechtheit über die Haltbarkeit bis hin zur Arbeits- und Funktionssicherheit. Diese werden auf Prüfständen sowie unter verschiedenen Einsatzbedin-



gungen genauso geprüft und bewertet wie die Bewährung des Prüfgegenstands bei einer praktischen Erprobung im Einsatzbetrieb. Die genauen Prüfbedingungen und -verfahren, wie auch die Bewertung der Prüfungsergebnisse werden von den jeweiligen unabhängigen Prüfungskommissionen in entsprechenden Prüfrahmen festgelegt und laufend auf den anerkannten Stand der Technik sowie den wissenschaftlichen Erkenntnissen und landwirtschaftlichen Erfordernissen angepasst. Die Prüfungen erfolgen nach Verfahren, die eine objektive Beurteilung aufgrund reproduzierbarer Werte gestatten. Die erfolgreiche Prüfung schließt mit der Veröffentlichung eines Prüfberichtes sowie der Vergabe des Prüfzeichens ab.

Der DLG-Qualitätssiegel-Test umfasste technische Messungen im Labor. Die Prüfgrundlage waren die Bestimmungen für die Verleihung und Führung des DLG-Qualitätssiegels für Kraft- und Schmierstoffe, Stand Januar 2018. Untersucht und verglichen wurde der Kraftstoffverbrauch eines Traktors bei Verwendung mineralischer und synthetischer Öle und verschiedenen Belastungsszenarien.

# Beurteilung – kurz gefasst

Die Öle Mobil Delvac 1<sup>™</sup> LE 5W-30, Mobil Delvac 1<sup>™</sup> Gear Oil 75W-140, Mobil Delvac 1<sup>™</sup> Gear Oil LS 75W-90 und Mobil DTE 10 Excel<sup>™</sup> 68 wurden in der gemeinsamen Verwendung hinsichtlich ihres Einflusses auf den Kraftstoffverbrauch eines Traktors im Vergleich zu mineralischen Ölen geprüft. Als Vergleichsöle dienten die Öle Mobil Delvac<sup>™</sup> XHP ESP 10W-40 (Motorenöl), Mobilube<sup>™</sup> HD 85W-140 (Hinterachse), Mobilube<sup>™</sup> LS 85W-90 (Vorderachse) und Univis<sup>™</sup> N 68 (Hydrauliköl).

Die Messungen erfolgten sowohl auf dem DLG-Zapfwellenleistungsprüfstand mit definierten Motordrehzahlen und Motormomenten unter Voll- und Teillast als auch im DLG-PowerMix unter definierten Anforderungen an Zug-, Hydraulik- und Zapfwellenleistung (Tabelle 1).

Tabelle 1:
Kraftstoffverbrauchsmessungen im DLG-PowerMix und auf dem DLG-Zapfwellenleistungsprüfstand

| DLG-PowerMix |                                     |                    |                                  | DLG-Zapfwellenleistungsprüfstand |           |                                     |                    |                                  |         |
|--------------|-------------------------------------|--------------------|----------------------------------|----------------------------------|-----------|-------------------------------------|--------------------|----------------------------------|---------|
| Zyklus       | Spezifischer<br>Kraftstoffverbrauch |                    | Differenz<br>Kraftstoffverbrauch |                                  | Messpunkt | Spezifischer<br>Kraftstoffverbrauch |                    | Differenz<br>Kraftstoffverbrauch |         |
|              | Vergleichsöle<br>[g/kWh]            | Testöle<br>[g/kWh] | [g/kWh]                          | [g/kWh]                          |           | Vergleichsöle<br>[g/kWh]            | Testöle<br>[g/kWh] | [g/kWh]                          | [g/kWh] |
|              |                                     |                    |                                  |                                  | MP1       | 241                                 | 240                | -1,0                             | -0,42   |
| Z1P          | 275                                 | 277                | 2,0                              | 0,72                             |           |                                     |                    |                                  |         |
| Z2P          | 278                                 | 274                | -4,0                             | -1,46                            | MP2       | 276                                 | 274                | -2,0                             | -0,73   |
| Z1G          | 285                                 | 285                | 0,0                              | 0,00                             |           |                                     |                    |                                  |         |
| Z2G          | 285                                 | 285                | 0,0                              | 0,00                             | MP3       | 255                                 | 253                | -2,0                             | -0,79   |
| Z3K          | 242                                 | 242                | 0,0                              | 0,00                             |           |                                     |                    |                                  |         |
| Z4K          | 244                                 | 240                | -4,0                             | -1,67                            | MP4       | 305                                 | 303                | -2,0                             | -0,66   |
| Z5K          | 272                                 | 269                | -3,0                             | -1,12                            |           |                                     |                    |                                  |         |
| Z3M          | 254                                 | 254                | 0,0                              | 0,00                             | MP5       | 235                                 | 233                | -2,0                             | -0,86   |
| Z4M          | 259                                 | 256                | -3,0                             | -1,17                            |           |                                     |                    |                                  |         |
| Z5M          | 297                                 | 294                | -3,0                             | -1,02                            | MP6       | 252                                 | 250                | -2,0                             | -0,80   |
| Z6MS         | 262                                 | 260                | -2,0                             | -0,77                            |           |                                     |                    |                                  |         |
| Z7PR         | 284                                 | 282                | -2,0                             | -0,71                            | MP7       | 230                                 | 229                | -1,0                             | -0,44   |
|              |                                     |                    |                                  |                                  |           |                                     |                    |                                  |         |
| Mittelwert   | 270                                 | 268                | -2,0                             | -0,75                            |           | 259                                 | 257                | -2,0                             | -0,71   |

Die Ergebnisse des DLG-PowerMix zeigen in Abhängigkeit von Leistungsart und -bedarf des Traktors eine Kraftstoffersparnis von durchschnittlich 2 g/kWh (=0,75 %), bezogen auf den Kraftstoffbedarf unter Verwendung von mineralischen Ölen. Der Unterschied im Kraftstoffverbrauch lag bei +0,72 % (Zyklus Z1P) bis -1,67 % (Zyklus Z4K).

Die Messungen auf dem Zapfwellenprüfstand ergaben eine Kraftstoffersparnis in allen gemessenen Punkten. Sie erstreckten sich von -0,42 % in Messpunkt MP1 bis -0,86 % in Messpunkt MP5. Die durchschnittliche Kraftstoffersparnis lag bei 2 g/kWh (= 0,71 %). Für die geprüfte Kombination aus den Ölen Mobil Delvac 1<sup>™</sup> LE 5W-30, Mobil Delvac 1<sup>™</sup> Gear Oil 75W-140, Mobil Delvac 1<sup>™</sup> Gear Oil LS 75W-90 und Mobil DTE 10 Excel<sup>™</sup> 68 konnte in verschiedenen Belastungssituationen des Traktors eine gesicherte Kraftstoffeinsparung nachgewiesen werden. Die Verbrauchswerte lagen unter denen der mineralischen Vergleichsöle.

| Prüfmerkmal          | Prüfergebnis     | Bewertung* |
|----------------------|------------------|------------|
| Kraftstoffeinsparung | 2 g/kWh (0,71 %) | + (gut)    |

<sup>\*</sup> Bewertungsbereich: + + / + / O / - / - - (O = Standard, k.B. = keine Bewertung)

#### **Das Produkt**

#### Hersteller und Anmelder

ExxonMobil
Petroleum & Chemical BVBA,
Antwerpen

Kontakt:

ESSO Deutschland GmbH
Herr Karsten Rettmann
karsten.rettmann@exxonmobil.com
www.exxonmobil.com

#### **Beschreibung**

Mobil Delvac 1<sup>™</sup> LE 5W-30

Mobil Delvac 1™ LE 5W-30 ist ein Hochleistungsöl auf Basis der Mobil SHC Synthese Technology™ für moderne emissionsarme Dieselmotoren, einschließlich Euro V/VI und US EPA 2007/2010, die z.B. mit Diesel Partikel Filter (DPF), selektiver katalytischer Reduktion (SCR), kontinuierlich regenerierendem Partikelfilter (CRT), Diesel-Oxidationskatalysator (DOC) und Abgasrückführungssystemen (EGR) ausgerüstet sind. Ferner kann Mobil Delvac 1™ LE 5W-30 in Hochleistungs-Dieselmotoren, die schwefelarmen Dieselkraftstoffe und zahlreiche Biodieselmischungen verwenden sowie in Dieselmotoren mit Saug- und Turbo-aufladung eingesetzt werden. Es ist geeignet für Lkw und Busse im Nah- und Fernverkehr sowie Maschinen im Bergbau, Baugewerbe und in der Landwirtschaft.

Mobil Delvac 1<sup>™</sup> Gear Oil 75W-140

Mobil Delvac 1<sup>™</sup> Gear Oil 75W-140 ist ein vollsynthetischer Getriebeschmierstoff für Antriebsstränge, der dazu konzipiert wurde, die hohen Leistungsanforde-

rungen moderner Getriebe zu erfüllen. Mobil Delvac 1<sup>™</sup> Gear Oil 75W-140 kann für Handschaltgetriebe, Achsen, Achsantriebe und Sperrdifferenziale, die API GL-5 Spezifikation erfordern, eingesetzt werden. Es ist geeignet für leichte und schwere Nutz- und Sonderfahrzeuge, Busse und Vans, Bau- und Arbeitsmaschinen im Baugewerbe, Bergbau und in Steinbrüchen sowie in der Landwirtschaft.

Mobil Delvac 1<sup>™</sup> Gear Oil LS 75W-90

Mobil Delvac 1<sup>™</sup> Gear Oil LS 75W-90 ist ein Hochleistungs-Kraftfahrzeuggetriebeöl mit Limited-Slip Eigenschaften. Es ist speziell geeignet für den Einsatz in Antriebssystemen, wo hohe Drücke und Stoßbelastung an Achsgetrieben und Endantrieben vorherrschen. Mobil Delvac 1<sup>™</sup> Gear Oil LS 75W-90 eignet sich besonders für den Einsatz in Hypoidgetrieben mit Sperrdifferenzial. Es ist geeignet für leichte und schwere Nutz- und Sonderfahrzeuge, Busse und Vans, Bau- und Arbeitsmaschinen im Baugewerbe, Bergbau und in Steinbrüchen sowie in der Landwirtschaft.

Mobil DTE 10 Excel™ 68

Mobil DTE 10 Excel™ 68 ist ein Hochleistungsöl für Hochdruck-Hydrauliksysteme. Es kann eingesetzt werden in Hydrauliksystemen, die unter Hochdruck und mit hohen Temperaturen in kritischen Anwendungen betrieben werden, Hydrauliksysteme, die ablagerungsanfällig sind, wie hochmoderne CNC-Maschinen, in Systemen, für die Kaltstart und hohe Betriebstemperaturen typisch sind und Systemen, die hohen Belastungen ausgesetzt sind und die einen hohen Grad an Verschleißschutz benötigen.

### **Die Methode**

Die Messungen des Kraftstoffbedarfs erfolgten im DLG-PowerMix-Test und auf dem DLG-Zapfwellenleistungsprüfstand.

Im DLG-Power-Mix-Test wurden 12 Messzyklen gefahren, davon 10 Zyklen mit jeweils 2 Messungen à 320 Sekunden und 2 Zyklen mit jeweils 2 Messungen à 570 Sekunden. Die Messungen auf dem Zapfwellenleistungsprüfstand ersteckten sich über 7 Messpunkte mit jeweils 8 Messungen. Die Messdauer betrug etwa 8 Stunden.

In beiden Prüfungen wurde jeweils ein standardisierter Dieselkraftstoff, Typ CEC RF-98-07 verwendet.

Die Tests wurden mit einem Traktor der Marke FENDT, Typ 724 durchgeführt (Tabelle 2).

Tabelle 2: Beschreibung und technische Daten des eingesetzten Traktors

| Marke, Typ         | FENDT, 724                                |
|--------------------|-------------------------------------------|
| Betriebsstunden    | 383                                       |
| Motor              | Nennleistung (kW/PS) (ECE R24): 162 / 220 |
|                    | Zylinderzahl: 6                           |
|                    | Hubraum: 6056 cm <sup>3</sup>             |
|                    | Nenndrehzahl: 2100 U/min                  |
|                    | Drehzahl bei max. Leistung: 1800 U/min    |
| Getriebe           | stufenloses Vario-Getriebe ML 180         |
| Zapfwelle          | 540 / 540 E / 1000                        |
| Ölwechselintervall | 500 BetrStd.                              |
| Kraftstoffvorrat   | 400 l                                     |
| Abgasstufe         | Final Tier 4                              |



Bild 2: Testtraktor auf dem DLG-Zapfwellenleistungsprüfstand

Im DLG-PowerMix-Test werden Zug-, Zapfwellen- und Hydraulikleistungen sowie deren Kombinationen über entsprechend der Leistungsklasse skalierte Belastungen durch den DLG-Zugleistungsmesswagen aufgebracht und der für die Verrichtung der entsprechenden Arbeit spezifische Dieselverbrauch in g/kWh bestimmt (Tabelle 3).

Tabelle 3: Belastungszyklen im DLG-PowerMix

| Zyklus | Belastungsart                         | simulierte Arbeit | Auslastung [%] |
|--------|---------------------------------------|-------------------|----------------|
| Z1P    | Zugarbeit                             | Pflügen           | 100            |
| Z2P    |                                       | Pflügen           | 60             |
| Z1G    |                                       | Grubbern          | 100            |
| Z2G    |                                       | Grubbern          | 60             |
| Z3K    | Zug- und Zapfwellenarbeit             | Kreiseln          | 100            |
| Z4K    |                                       | Kreiseln          | 70             |
| Z5K    |                                       | Kreiseln          | 40             |
| Z3M    |                                       | Mähen             | 100            |
| Z4M    |                                       | Mähen             | 70             |
| Z5M    |                                       | Mähen             | 40             |
| Z6MS   | Zug-, Zapfwellen- und Hydraulikarbeit | Miststreuen       |                |
| Z7PR   |                                       | Ballenpressen     |                |

Für die Verbrauchsmessung auf dem Zapfwellenprüfstand werden dem unter Volllast laufenden Traktor Belastungen auf die Zapfwelle aufgebracht, um sieben vordefinierte Motordrehzahlen und Motormomente zu erhalten (Bild 2). Bei der jeweiligen Motordrehzahl unter Voll- und Teillast wird der spezifische Dieselverbrauch in g/kWh bestimmt (Tabelle 4).

Tabelle 4: Belastungszyklen des Zapfwellenprüfstands (7-Punkte-Test)

| Messpunkt | Motordrehzahl<br>[1/min] | Äquiv. Motormoment<br>[Nm] | Zapfwellenleistung<br>[kW] |
|-----------|--------------------------|----------------------------|----------------------------|
| MP 1      | 1800                     | 818,9                      | 154,4                      |
| MP 2      | 2129                     | 516,0                      | 115,0                      |
| MP 3      | 1890                     | 582,0                      | 115,2                      |
| MP 4      | 1890                     | 290,7                      | 57,5                       |
| MP 5      | 1257                     | 654,6                      | 86,1                       |
| MP 6      | 1260                     | 436,6                      | 57,6                       |
| MP 7      | 1500                     | 933,4                      | 146,6                      |

# Die Testergebnisse im Detail

#### Kraftstoffverbrauch im DLG-PowerMix

Die Verbrauchsmessungen im simulierten Feldeinsatz des DLG-PowerMix über 12 Zyklen ergaben einen durchschnittlichen spezifischen Verbrauch von 270 g/kWh bei Verwendung der mineralischen Öle und 268 g/kWh für die synthetischen Öle (Bild 3).

Die Differenz von 2 g/kWh entspricht einer relativen Ersparnis von 0.75% (Tabelle 5). Sie erstreckt sich von 2 g/kWh (= +0.72%), Zyklus Z1P, bis -4 g/kWh (= -1.67%), Zyklus Z4K.




Bild 3: Spezifischer Kraftstoffverbrauch im DLG-PowerMix

Tabelle 5:
Differenzen des Kraftstoffverbrauchs im DLG-PowerMix

| Zyklus | Belastungsart             |                | Spez. Kraftstoff-<br>verbr. Vergleichsöle | Spez. Kraftstoff-<br>verbrauch Testöle | Diff. Kraftstoff-<br>verbrauch |       |
|--------|---------------------------|----------------|-------------------------------------------|----------------------------------------|--------------------------------|-------|
|        |                           |                | [g/kWh]                                   | [g/kWh]                                | [g/kWh]                        | [%]   |
| Z1P    | Zugarbeit                 | Pflügen 100 %  | 275                                       | 277                                    | 2,0                            | 0,72  |
| Z2P    |                           | Pflügen 60 %   | 278                                       | 274                                    | -4,0                           | -1,46 |
| Z1G    |                           | Grubbern 100 % | 285                                       | 285                                    | 0,0                            | 0,00  |
| Z2G    |                           | Grubbern 60%   | 285                                       | 285                                    | 0,0                            | 0,00  |
| Z3K    | Zug- und Zapfwellenarbeit | Kreiseln 100 % | 242                                       | 242                                    | 0,0                            | 0,00  |
| Z4K    |                           | Kreiseln 70 %  | 244                                       | 240                                    | -4,0                           | -1,67 |
| Z5K    |                           | Kreiseln 40 %  | 272                                       | 269                                    | -3,0                           | -1,12 |
| Z3M    |                           | Mähen 100 %    | 254                                       | 254                                    | 0,0                            | 0,00  |
| Z4M    |                           | Mähen 70 %     | 259                                       | 256                                    | -3,0                           | -1,17 |
| Z5M    |                           | Mähen 40 %     | 297                                       | 294                                    | -3,0                           | -1,02 |
| Z6MS   | Zug-, Zapfwellen-         | Miststreuen    | 262                                       | 260                                    | -2,0                           | -0,77 |
| Z7PR   | und Hydraulikarbeit       | Ballenpressen  | 284                                       | 282                                    | -2,0                           | -0,71 |
|        |                           | Mittelwert     | 270                                       | 268                                    | -2,0                           | -0,75 |

#### Kraftstoffverbrauch bei den Zapfwellenleistungsmessungen

Die Verbrauchsmessungen im Test auf dem DLG-Zapfwellenleistungsprüfstand ergaben für die 7 Messpunkte geringere Verbrauchswerte bei Verwendung der synthetischen Öle von 1 bis 2 g/kWh.

Die Messungen ergaben einen durchschnittlichen spezifischen Verbrauch von 259 g/kWh bei Verwendung der mineralischen Öle und 257 g/kWh für die synthetischen Öle (Bild 4).

Die ermittelten Differenzen betrugen 1 bis 2 g/kWh, dies entspricht relativen Kraftstoffeinsparungen von -0,42 % bis -0,86 % (Tabelle 6).

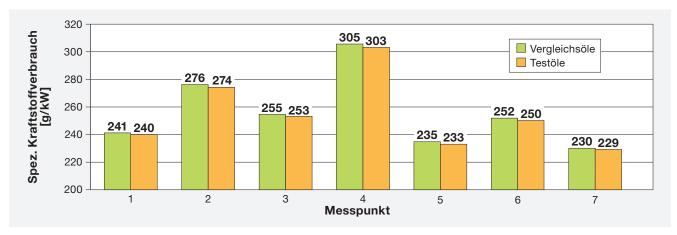



Bild 4: Spezifischer Kraftstoffverbrauch bei den Zapfwellenprüfstandsmessungen

Tabelle 6: Differenzen im Kraftstoffverbrauch bei den Zapfwellenleistungsprüfstandsmessungen

| DLG-Zapfwellenleistungsprüfstand |                    |                         |                         |                                     |                    |                                  |         |
|----------------------------------|--------------------|-------------------------|-------------------------|-------------------------------------|--------------------|----------------------------------|---------|
| Messpunkt                        | Motor-<br>drehzahl | Äquiv. Motor-<br>moment | Zapfwellen-<br>leistung | Spezifischer<br>Kraftstoffverbrauch |                    | Differenz<br>Kraftstoffverbrauch |         |
|                                  | [1/min]            | [Nm]                    | [kW]                    | Vergleichsöle<br>[g/kWh]            | Testöle<br>[g/kWh] | [g/kWh]                          | [%]     |
| MP1                              | 1800               | 818,9                   | 154,4                   | 241                                 | 240                | -1,0                             | -0,42   |
| MP2                              | 2129               | 516,0                   | 115,0                   | 276                                 | 274                | -2,0                             | -0,73** |
| MP3                              | 1890               | 582,0                   | 115,2                   | 255                                 | 253                | -2,0                             | -0,79** |
| MP4                              | 1890               | 290,7                   | 57,5                    | 305                                 | 303                | -2,0                             | -0,66*  |
| MP5                              | 1257               | 654,6                   | 86,1                    | 235                                 | 233                | -2,0                             | -0,86*  |
| MP6                              | 1260               | 436,6                   | 57,6                    | 252                                 | 250                | -2,0                             | -0,80** |
| MP7                              | 1500               | 933,4                   | 146,6                   | 230                                 | 229                | -1,0                             | -0,44*  |
| Mittelwert                       |                    |                         |                         | 259                                 | 257                | -2,0                             | -0,71   |

<sup>\*</sup> p=0,05 / \*\* p=0,01

#### **Fazit**

Für die geprüfte Kombination aus den Ölen Mobil Delvac 1<sup>™</sup> LE 5W-30, Mobil Delvac 1<sup>™</sup> Gear Oil 75W-140, Mobil Delvac 1<sup>™</sup> Gear Oil LS 75W-90 und Mobil DTE 10 Excel<sup>™</sup> 68 konnte in verschiedenen Belastungssituationen des Traktors eine gesicherte Kraftstoffeinsparung nachgewiesen werden.

Die Verbrauchswerte lagen unter denen der mineralischen Vergleichsöle. Für die geprüfte Kombination aus den Ölen Mobil Delvac 1<sup>™</sup> LE 5W-30, Mobil Delvac 1<sup>™</sup> Gear Oil 75W-140, Mobil Delvac 1<sup>™</sup> Gear Oil LS 75W-90 und Mobil DTE 10 Excel<sup>™</sup> 68 konnte somit das "DLG-Qualitätssiegel" verliehen werden.

#### Weitere Informationen

#### Prüfungsdurchführung

DLG TestService GmbH, Standort Groß-Umstadt

Die Prüfungen werden im Auftrag des DLG e.V. durchgeführt.

#### **DLG-Prüfrahmen**

DLG-Bestimmungen für die Verleihung und Führung des DLG-Qualitätssiegels für Kraft- und Schmierstoffe (1. Januar 2018)

# **Fachgebiet**

Betriebsmittel

#### **Bereichsleiter**

Dr. Michael Eise\*

#### Prüfingenieur

Dipl.-Ing. (FH) Sander Schwick, M.Sc.

#### **DLG.** Offenes Netzwerk und fachliche Stimme.

Die DLG e.V. (Deutsche Landwirtschafts-Gesellschaft), 1885 von Max Eyth gegründet, ist eine Fachorganisation der Agrar- und Ernährungswirtschaft. Leitbild ist der Wissens-, Qualitäts- und Technologietransfer zur Förderung des Fortschritts. Dabei fungiert die DLG als offenes Netzwerk und fachliche Stimme in der Agrar- und Ernährungswirtschaft.

Als eine der führenden Organisationen ihrer Branche organisiert die DLG internationale Messen und Veranstaltungen in den Kompetenzfeldern Pflanzenbau, Tierhaltung, Land- und Forsttechnik, Energieversorgung und Lebensmitteltechnologie. Ihre Qualitätsprüfungen für Lebensmittel sowie Landtechnik und Betriebsmittel erfahren weltweit hohe Anerkennung.

Ein weiteres wichtiges Leitmotiv der DLG ist es seit über 130 Jahren den Dialog zwischen Wissenschaft, Praxis und Gesellschaft über Fach- und Ländergren-

zen hinweg zu fördern. Als offene und unabhängige Organisation erarbeitet ihr Expertennetzwerk mit Praktikern, Wissenschaftlern, Beratern, Fachleuten aus Verwaltung und Politik aus aller Welt zukunftsorientierte Lösungen für die Herausforderungen der Agrar- und Ernährungswirtschaft.

# Test-Kompetenz in Agrartechnik und Betriebsmitteln

Das DLG-Testzentrum Technik und Betriebsmittel ist mit seinen Methoden, Prüfrahmen und Auszeichnungen führend in der Prüfung und Zertifizierung von Agrartechnik und Betriebsmitteln. Die Methoden und Testprofile sind praxisbezogen, herstellerunabhängig und von neutralen Prüfungskommissionen erarbeitet. Sie beruhen auf modernsten Mess- und Prüfverfahren, auch internationale Standards und Normen werden berücksichtigt.

Interne Prüfnummer DLG: 2015-647 Copyright DLG: © 2019 DLG



DLG TestService GmbH Standort Groß-Umstadt

Max-Eyth-Weg 1 • 64823 Groß-Umstadt
Telefon +49 69 24788-600 • Fax: +49 69 24788-690
Tech@DLG.org • www.DLG.org

Download aller
DLG-Prüfberichte kostenlos
unter: www.DLG-Test.de

<sup>\*</sup> Berichterstatter